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We present an exact real-space renormalization-group approach to study the electronic and
vibrational properties of the Vicsek fractal. This approach is developed in the framework of the
recursive evaluation of the generating function, which efficiently gives the average density of states
(ADOS). The ADOS spectrum consists of hierarchies of isolated peaks following elegant recursive

structural rules.

PACS number(s): 64.60.Ht, 63.20.Pw, 71.20.—b, 71.55.Jv

Fractals are ubiquitous in nature and the study of their
physical properties is important. In an experiment on a
fractal drum, Sapoval et al. [1] investigated the transverse
vibrations of a membrane bounded by a rigid fractal con-
tour. They observed strongly localized vibrational modes
inside fractal cavities, which are connected to the rest of
the membrane through narrow paths. Motivated by this
experiment, Jayanthi et al. examined the vibrations of
a Viscek fractal (VF), which has a topology similar to,
and much simpler than, the drum with the Koch curve
boundary used in the experiment. Using a real-space
Green’s-function approach, they demonstrated the exis-
tence of analogous superlocalized modes in the VF [2].
Here, by means of an exact real-space renormalization-
group (RG) technique, we calculate recursively the gen-
erating function [3] of the fractal, from which the vi-
brational and electronic densities of states are computed
very efficiently. We are able to obtain the spectra for ex-
tremely large system sizes; e.g., the 30th-stage VF, which
are already indistinguishable from those of an infinite-
size infinite-generation VF [4,5]. The spectra consist en-
tirely of isolated peaks corresponding to highly degener-
ate superlocalized modes. We found that the peaks are
organized in hierarchies following very elegant recursive
structural rules. They are more complex than the anal-
ogous hierarchies of the Sierpinski gasket [6,7] and the
Cantor-set spectra of one-dimensional quasicrystals [8].
Interest in studying the VF, instead of other fractals like
the Sierpinski gasket, is enhanced by the fact that the
renormalization can be done exactly, and the topology is
more similar to the fractal drum studied experimentally
by Sapoval et al. [1]. In contrast, the Sierpinski gasket
has a very different geometry from the drum and has
closed loops at all length scales, while the VF fractal has
no closed loops.

The VF at the Ith stage is composed of N; = 5! sites
[9]. Figures 1(f) and 1(a) show the first and the second
stages, respectively. The generating function is an elec-
tronic analog of the partition function used in statistical
mechanics and is defined by [3]
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Here U = (u1,u2,...,un), in which N is the number of
sites of the system, and the matrix X is given by X =
ZI — H, where Z = E + in, I is the identity matrix,
and H the N x N symmetric Hamiltonian matrix. We
consider the one-electron tight-binding Hamiltonian:

H=Z|i>ei<i|+zli>tﬁ<j l, (2)
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FIG. 1. Schematic illustration of the renormaliza-
tion-group transformations. (a) A Vicsek fractal at the second
stage. (b)—(f) The five decimating substeps which lead to the
fractal at its first stage in (f). The initial and the renormalized
model parameters are shown in (a) and (b)—(f), respectively.
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where | ¢) is the Wannier state at site %, ¢; is the site
energy, and t;; the hopping integral associated with the
bond connecting sites ¢ and j. The site energy ¢; is cho-
sen to be €, for the sites with coordination number 4 and
€5 for other sites. We only consider nearest-neighbor in-
teractions and choose t;; to be t; for bonds connecting
two adjoining two-coordinated sites, and 2 for the other
bonds [see Fig. 1(a)].

For the lth-stage VF, there are NV;_» identical subclus-
ters, each of which is a second-stage VF with 25 sites and
every two adjoining subclusters are connected by bond
t1. When each of them is decimated to the five-site first-
stage VF, the original fractal is transformed to its ({—1)th
generation. The above step involves simultaneous deci-
mation of several connected sites in every subcluster. The
derivation of the RG equations and the evaluation of the
integrals in Eq. (1) over the variables associated with
the decimated sites become very complicated. Therefore,
we sandwich several decimating substeps in between [see
Figs. 1(a)-1(f)]. At the first decimating substep, every
subcluster of 25 sites in the [th-generation VF, as shown
in Fig. 1(a), is converted to the subcluster given in Fig.
1(b). We denote by H; and H, the Hamiltonian matri-
ces corresponding to the decimated and remaining sites,
respectively. Then, UT XU can be rewritten as

UTXvU = UlTiuUl + UFKwUZ + Ule(_mUl
+U;5 X,5,Us (3)

where X;; = ZI — H,, i = 1,2, and X,, = (X,;)T
represents “interactions” between the decimated and re-
maining sites. Performing the integrals in Eq. (1) over
the variables associated with the decimated sites, we have
G(E)=C'+G'(E) [3,10]. Here C’ is a constant given
by

n Npln2n

c'=cC
2N

1
T 9N In[det(X,,)], (4)
where Np = 4N/52 is the number of decimated sites and
det denotes the determinant of a matrix; G'(E) is the
generating function of the system corresponding to the
undecimated sites, which is associated with a renormal-
ized matrix
X'B = KXo — 121(111)—1X12a (5)
where X' = ZI — H' determines the renormalized Hamil-
tonian of the system corresponding to the undecimated
sites.

Since the Hamiltonian matrix H, associated with all
the decimated sites is diagonal, it follows from X, =
ZI— H, that the matrix X, is also diagonal. Thus, the
recursion relation (4) can be explicitly written as

Z\/D In27 ND
!

= - - — 6
c'=C+ 5 aN In(Z — €;), (6)
and from Eq. (5) we obtain the RG equation correspond-
ing to the first decimating substep

B B—et B (7)
) =€ )
Z — €1 ! 2 Z — €71

ky =
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where k; is the hopping integral associated with every
bond denoted by a dotted line and E; the site energy
of each site connected by the dotted line in Fig. 1(b).
Analogously, similar RG equations are obtained for each
of the remaining four decimating substeps [Figs. 1(c)—

1(f)]:

kz = kl + k%’yl, Ez = E1 “+ k%’yl, (8)

k3 = kz + kg’Yz, E3 = E2 + kg')'Zv (9)

ky = tiksys, Es=ex+t2ys, Es=E;+kiys, (10)

t;_ = tl: t’z = t2k1’74, Ell = € + 4t§’}/4,
(11)

6l2 = Es + kZ’M,

where v; = (Z — E;)~!. After the full decimating
step, namely from Figs. 1(a) to 1(f), via the interme-
diate substeps, the generating function can be written as
G(E) = D'+ G"(E). Here, G(E) and G"(E) are associ-
ated respectively with the Hamiltonian H with parame-
ters €; and t;, and the renormalized Hamiltonian H’ with
parameters €, and t;. These Hamiltonians have similar
forms and correspond to the {th- and ({ —1)th-generation
VF, respectively. The constant D’ satisfies the relation

21 2 2
nim_ 2 In(Z — €1) —l—Zln(Z—Ei) .

D'=D
+ 5 52

=1

(12)

For the lth-generation VF with [ > 2, one performs
I — 1 full decimating steps. The RG equations are given
by Egs. (7)-(12) for each of them, except that for the
(I — 1)th full step ¢t} = t; should be removed from Eq.
(12), since the VF after this step is converted to an iso-
lated five-site cluster. The generating function of the
{th-generation VF is given by

21n 2w

(n+1) — pn)
DY — p™) 4 =

4
2 n(z — ™y + S n(z - EM)|,

- Fn+1
=1

(13)

In 27 1
2 x 5i-1 2 x 5!

G(E)=D® 4+ In[det(X®)]  (14)
forn =1,2,...,1 — 1. Here X = ZI1 — H® and HY
is the renormalized Hamiltonian matrix of the isolated
five-site cluster. The determinant of X(l) is

1 1 !
X =(Z2-a)1Z2 -2 - ) —aw)). (15)
The initial condition for Eq. (13) is D) = 0, egl) = €1,

and Ei(l) =FE;, i =1 to 4.
The average density of states (ADOS) is given by [3]
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B - 2 lim T oG 16 stage, where we choose €¢; = €3 = 0, t; = t2 = 1, and
p(E) = ;nl—rﬂ) moE" (16) K;/m = K;/m = 1, respectively. We take n = 1073

where Im denotes the imaginary part of a complex quan-
tity. Contrary to the generating function defined by
Lemieux et al. [3], Eq. (1) contains a factor 1/N. Thus,
Eq. (16) gives the density of states divided by N, namely
the ADOS. From Egs. (13), (14), and (16), we obtain the
ADOS of the lth-generation structure

1.. 1/Y
P(E) = ;%%Im{a (})

(17)

where Y = 8X/8Z, pén) =1- 86(1")/8Z, and pgn) =
1-0E™/8Z,i=1to 4.

The transverse vibrations of the fractal are described
by the equation of motion —mw?s); = > i K (Y5 —
1;), where 1; is the displacement perpendicular to the
fractal plane of mass m placed at site i, and K;; is the
spring constant between sites i and j. We choose Kj;
to be K; and K, for the bonds denoted by double and
single solid lines, respectively, in Fig. 1(a). Each of the
boundary sites is anchored by spring constant K; to a
rigid boundary [2]. The equation of motion can be recast
in the form similar to the electronic Hamiltonian in Eq.
(2). The parameters are related by €, = 4K3/m, €3 =
(K1 + K»)/m, t1 = —K;/m, and t; = —K3/m, while
E is replaced by w?. Using the RG technique, we also
calculated the vibrational ADOS.

Figures 2(a) and 2(b) present, respectively, the elec-
tronic and vibrational ADOS’s of the VF at its 30th
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FIG. 2. Average DOS (arbitrary units) of the Vicsek frac-
tal: (a) electronic DOS for €¢; =€; = 0 and t; =tz = 1 (in
units of ¢1); (b) vibrational DOS, where K1/m = K2/m =1
(in units of K /m).

to approximate the limit » — 0 in Eq. (17). The
ADOS’s exhibit hierarchical structures composed of iso-
lated peaks. If a smaller 7 is taken, every peak becomes
sharper and more structures become visible. Each peak
corresponds to a highly degenerate state. The high de-
generacies result from the rich symmetry of the system.
For the first-stage fractal, the Hamiltonian is invariant
under the permutation of the four outer sites. The second
generation consists of four sidebranches, each of six sites,
connected to the central atom. The symmetry operations
include the permutation of the four sidebranches and also
the permutation of the three outer sites in each side-
branch. In general, the symmetry group of the lth-stage
VF with nearest-neighbor interactions is a direct prod-
uct of permutation groups. This symmetry is much richer
than, for example, the point groups for usual molecules.

By examining the nature of the normal modes as dic-
tated by the symmetry, the degeneracy of all the modes
can be obtained by means of systematic counting. The
details will be reported elsewhere. Here we summa-
rize those results relevant to the interpretation of the
ADOS’s. The spectra consist completely of isolated
peaks of various degeneracies. The total number of peaks
at the lth stage is proportional to (2 + \/g)l asymptoti-
cally, much less than the number of sites V;. A constant
fraction of them correspond to nondegenerate modes and
make a vanishing contribution to the ADOS at large [.
The ADOS’s are dominated only by the highly degener-
ate modes. We group the peaks into sets according to
the degeneracies. The first set contains only one peak at
w? = 2. It has the highest degeneracy per site, which can
be shown to be exactly 6/25. The second set consists of
the four peaks having the second highest degeneracy per
site of 6/125. In general, the ith set has p; peaks of de-
generacy 6/5i+1, where p; is given by p; = 4p;—1 — pi—2-
All these exact results agree well with the ADOS in Fig.
2. Apparent nonuniformity of the peak heights for the
third and the higher sets are due to adopting a finite n
in Eq. (17).

The hierarchical structures result from the self-
similarity of the fractal. We first examine Fig. 3(a),
which shows the electronic ADOS with parameters €; =
1, e2 =0, t; =tz = 1. The spectrum is composed of one
highest peak and four clusters containing the four second
highest peaks. Figures 3(b) and 3(c) expand the first
and the second clusters on the left respectively, where
n = 107* is taken. We denote the clusters by the second
level structures and the original one by the root struc-
ture. They are similar to each other but not identical.
The hierarchies in Figs. 3(b) and 3(c) are the two sta-
bilized structures characterizing the tree. Upon further
magnification, these two structures and their mirror im-
ages reappear recursively. Let us refer to the structures
as types A and B, respectively, and the mirror images
by A’ and B’. In general, structure A [Fig. 3(b)] at the
ith level is composed of a main isolated peak belonging
to the ith set (according to the above classification by
degeneracy) sandwiched between four smaller structures
of the (¢ + 1)th level. The four structures, starting from
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the left, are of type A, A’, B’, and A, respectively. This
recurrence in magnifying from the ith to the (¢ + 1)th
level can be summarized by the recursive structural rule:
A — AA'IB’'A, where I denotes the main isolated peak.
Structure B [Fig. 3(c)] has only three subclusters and the
recursive rule is B — A'IB’A. The rules for the mirror
images follow trivially.

The precise structure at the root level depends on the
model parameters. For Figs. 3(a) and 2(b), the compo-
sition is ABIAA’, but the structures A and B on the left
overlap each other. We can interpolate between Figs.
3(a) and 2(a) by decreasing €; from 1 to 0. The third
level structure of type A’ at E ~ 0.15 in Fig. 3(a) merges
with the first level isolated peak at E = 0 in Fig. 2(a).
The root structure thus becomes ABIB’'A’, where the
degeneracy of the main peak is enhanced. For this set
of parameters, the spectral structure is symmetrical with
respect to the £ = 0 axis due to additional symmetry.
In some cases, there exist anomalies in the ordering of
the subclusters, especially at levels close to the root. For
example, the peak I and the structure B’ in the recursive
rule of A is sometimes interchanged. At increasingly high
magnification, inside a structure of type A, the width of
its substructure B’ and its distance from I decrease rela-
tively. Asymptotically, the substructure B’ collapses into
I to form a single peak.

The spectrum of the Sierpinski gasket was computed
exactly by Rammal using a similar generating function
method [7], and by Domany et al. directly from the re-
cursion relation for the energy renormalization [6]. The
Sierpinski gasket spectrum has analogous but simpler
self-similar properties; e.g., there is only one type of sub-
structure, in contrast to the two types, A and B, for the
VF. This is because, for the Sierpinski gasket, the sites
decimated in each step are equivalent, and the recursion
relation has a simple quadratic form. However, for the
VF case, there are five different substeps. The overall
recursion relations for the full step obtained by combin-
ing Egs. (7)—(12) are substantially more complicated.
The complexity of the relations leads to the much richer
properties of the hierarchies.
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FIG. 3. Average electronic DOS (arbitrary units) of the
Vicsek fractal for ¢, = 1, 2 = 0, t; = t2 = 1 (in units
of t1): (a) shows the complete spectrum; (b) and (c) show
magnifications of the first and the second subclusters on the
left, respectively.
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